JAPL

A Practical Software Measurement
Mechanism

Allen P. Nikora John C. Munson
Autonomy and Control Section Computer Science Department
Jet Propulsion Laboratory University of Idaho
California Institute of Technology Moscow, ID 83844-1010
Allen.P.Nikora@jpl.nasa.gov imunson@cs.uidaho.edu

The work described in this presentation was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration. The work was
sponsored by the National Aeronautics and Space Administration’s IV&V
Facility and the JPL Center for Mission Information Systems and Software
(CSMISS) Software Engineering Technology Work Area

JPL

Topics

Measurement Overview

Fault Measurement and Estimation Mechanism
¢ Structural Measurement

+ Fault Identification and Counting

¢ Fault Burden Computation

DARWIN — A Network Appliance for Measurment
¢ Summary
References

WOSA 2001 2

JPLU

Measurement Overview

« Measurement is central to any engineering
process

- All software design decisions governed by
measurable outcomes

= All code development controlled by
measurable outcomes

= All software test activity controlled by
measures of test activity

= All software reliability decisions quantified

WOSA 2001 3

JPL

Measurement Overview

= Fault content during development can be estimated
using measurements of system’s structural evolution
[Mun98,Niko981].

+ Make structural measurements each time a new version of a
module is checked into CM repository.

¢ Analyze raw measurements with respect to a set of
measurements from a baseline build

+ Compute fault index via principal components analysis
[Dillon84]

¢ Track structural evolution by recording differences between
fault indices for subsequent versions of each module
comprising the system.

- Difference is termed fault change
- Absolute value of difference is termed net fault change

WOSA 2001 4

Fault Measurement and Estimation JPL
Mechanism

Extract

Repaired
Source Files
i . , Repaired
Problem \dentify Repaired File epare
Report Source Files D Source Files
sports Repaired s Compare Fault
S| Repairs to Redions
Faulty Files 9!
o Extract Faulty Faulty
Source Files Source Files Fault
'< Measurement
Fault Identif Discovered Find Initial Initial Fault Add fauit a}nd .
Identification and —P{ Faultsy Faults Fauit Placement placement to Identification
Counting Rules Occurrence repository
\ / 4 Add structural
) Extract Most recently Measure most Raw structural measurements | . name,
CM Library changed changed source recently changed measurements to repository | evision number,
source files files source files l fault count
+ module name, revision number,
structural measurements
Place fault
Measurement Compute Fault NI module name,
Baseline fault index indices u:;jlc;essit(l)nto re“;ﬁﬂ i':ér:f o P> Measurement Structural
P "y Repository ¢ Measurement
module names, revision numbers, fault indices
module name, revision number,
fault index, fault count module names, revision numbers, Compute
fault indices
Comp}Jte Proportional Fault
Proportional
Fault Burd Fault Burden Burden
2 ren Develop fault Regression Compute Absolute
content . absolute fault
WOSA 2001 regreSSion model coefficients burden Fault Burden 5

Measurement Mechanism

« Attributes
+ Two of the three major areas can be automated

+ Fault identification and counting is still a manual
activity...
- But is not necessary to get useful information.

- Proportional fault burdens may be estimated without
failure and fault information.

WOSA 2001

JPL

JPL

Structural Measurement
What Gets Measured?

« Measurement elements for development
+ Static source code attributes
+ Rate of code change
+ Software faults

Measures of design and code quality
+ Operational entropy

¢ Functional entropy

Measurement in software test

¢ Measures of test efficiency

¢+ Measures of test effectiveness

¢ Measures of test entropy

WOSA 2001 7

JPL

Structural Measurement

How Do We Measure?

= Establish a measurement baseline

+ Performed infrequently

+ Must be done at least once at the start of a measurement
effort
+ Baseline should also be changed as follows:

+ For a system with multiple releases (e.g., more than 2), change
baseline after each release.

- Re-establish baseline if measurement tools change —
experience indicates that no two tools make measurements the
same way

+ Establish separate baseline for each programming language

WOSA 2001 8

JPLU

¥ Structural Measurement (cont’d)

How Do We Measure?

= ldentify source modules that have changed since the
last set of structural measurements was made
+ Measure each time developers check modules into CM
library

+ For a large development effort, measurement overhead might
become large enough to pose burden on developers

+ At aregular time each day (preferably when few or no
developers are on the system), identify all of the modules
that have changed since the last time measurements of the
system were taken

+ Developers don’t notice measurement overhead
+ Failure of measurement mechanism will not affect developers

WOSA 2001 9

JdPL
Structural Measurement (cont’d)

How Do We Measure?

Take structural measurements of the identified
source modules

+ Measure components that are at the same level of maturity
to ensure fault indices have the same meaning
¢ CM systems may offer different views of a system
- components that have completed unit test
- components that have completed integration test

+ Need to strike balance

- compare systems of similar maturity, and

. obtain enough measurements throughout the system’s
development to constitute a “good” change history

- Recommend measuring components that have passed unit
tests, but have not yet been integrated

WOSA 2001 10

APL
Structural Measurement (cont’d)

How Do We Measure?

AR/CR Tracking AR/CR
Environment Rejected

AR — Anomaly Report
: CR — Change Request

]
]
]
[}
1
i
]
]
]
1
]
: AR/CR QVR{tC.R
| Submitted atng
b Assignment
: Development
: Environment
e e e e e e
| | T 1
: Dev view : Dev Stable view : Test view :
| | | |
| S | | :
I ev | Subsys Subsys ?. Integr Integr Test
: —>» Complete '}_) Test 'oTest Comp l Build > Test > Complete | Release :
¢		
I		
-	Test	
Measure software and ! Hold I		
{ compute fault indices | :
CM Extract CM Extract l CM Extract
Integ. Build
Dev Stable
De]\s i}rleecfgence Reference Test .Reference n.n.n
Ty Directory Directory
Local Developer \vf Build n.n.n
Work Areas Build Delivery

WOSA 2001 11

APL

Structural Measurement (cont’d)

How Do We Measure?

represented in measurement

+ Prior work indicates measurements fall into
following domains [Mun98, Niko981]:
- Size
« Structure
- Style
- Nesting
+ Different languages may have different domains
+ Previous work did not include O-O measurement

WOSA 2001 12

APL
Fault Index: the Fault Surrogate

» Varies in direct proportion to software faults

+ Used to estimate a module’s fault burden
(proportional or absolute)

- Ratio of two module’s fault indices indicates how
many more faults one module has than another

- Absolute fault burden can be estimated by using fault
index as input to a (regression) model relating the
fault index to the number of faults

WOSA 2001 13

JPLU

Fault Standard

« A fault standard must be created for all fault
recording processes.

- A valid fault standard has the properties that:

+ All developers will record faults in exactly the
same way

+ All developers will enumerate faults in exactly the
same manner.

- Fault standard must be validated by
experiment

WOSA 2001 14

JPL
Fault Identification and Counting

« |dentify failures and faults

+ For each failure, identify all source files changed
in making repairs

+ ldentify individual faults removed from software in
response to a failure

- Compare repaired source files to versions of those
source files containing the faults

- Apply fault identification and counting rules
[Niko98,Niko981] to the resulting differences between the
two sets of files.

WOSA 2001 15

JdPL
Fault Identification and Counting

= For each fault, identify point at which it was
first inserted into the software

+ Search all previous versions of module to identify
version in which fault first appeared

+ Measure structural difference between version in
which fault initially appeared and immediately
preceding version.

+ Develop regression model relating number of
faults inserted as a function of structural change.

WOSA 2001 16

@ JPL

Fault Identification and Counting

= Project management can establish and
enforce following policy:

+ Do not make repairs and other types of changes
to a component at the same time

+ First make the repairs, verify them, and check
them into the configuration library

¢ Use the repaired version as the basis for
enhancing or adding functionality

WOSA 2001 17

JPL
Fault Identification and Counting

= Changes made in response to a failure must
be separated from requirements changes

+ Failing to do so will lead to unquantifiable noise in
the fault measurements

¢ Accuracy of regression models will be reduced,
and may make their construction impossible.

WOSA 2001 18

APL
Fault Identification and Counting

= Some revision control and problem reporting systems
have features that will help to implement this policy.

+ The CM system unit of work is a “change package”

« Change packages created for problem reports, new
functionality, or requirements change requests (CR)

- Work associated with a problem report/CR/new functionality is
checked into the change package.

+ Problem reporting system is tied to the CM system such that
each new failure report creates a change package in the
configuration library

+ Automatically provides a place for developers to submit the
repairs

+ Successful enforcement ultimately the responsibility of project
management and development teams.

WOSA 2001 19

APL

Fault Burden Computation

« Proportional Fault Burden

o Compute ratio of its cumulative net fault change to
the sum of the cumulative net fault change values
for all modules in the system. e.g.

+ the cumulative net fault change for module Ais 7,

+ the sum of the cumulative net fault change values for all
modules in the system is 140,

- we would expect module A to have 7/140, or 5%, of the
total number of system faults

+ The proportional fault burden of module A would be 5%.

WOSA 2001 20

JPL

Fault Burden Computation

* Absolute Fault Burden

¢ Use regression model to predict number of faults
inserted
- Inputs — fault change, net fault change
- Output — number of faults inserted

WOSA 2001 21

JPL

DARWIN - A Network Appliance

for Measurement

= DARWIN is an integrated network appliance

to capture characteristics of evolving
software.

+ Requirements

+ Fault reports

o Failure reports

¢ Source code measurements

+ Dynamic code measurements

WOSA 2001 22

@ DARWIN as a Database *P-
Management Activity

Source
Code Code
Measure-
ments

Code T
Repository 9
=
\A Executable esults
T

Code

=

Measurement
Database

Z — =20 >0

WOSA 2001 23

JPL

" DARWIN as a Management Tool

i
D { Multiple
3 > Projects
A a -
l Measurement
N ‘ g Database
Management
Staff

WOSA 2001 24

JPU

Summary

= Recent work showing that a software system’s measured
structural is related to its fault content has led to the
development of a practical measurement mechanism.

= Structural measurement activities can be automated by means
of scripts interacting with the revision control system being used
for the development effort
+ Scripts run at regularly-scheduled intervals to

|dentify and measure the modules that have changed since the last
time measurements were taken

+ Compute fault indices
+ Fault indices alone can be used to estimate the proportional fault
burden of a given module at any time.
A network appliance for performing measurement activities has
been developed and will be installed at JPL.

+ Removes overhead of measurement activities from development
platforms; minimizes effect on developers

+ Allows multiple projects to use the same measurement capability

+ Consistent measurement allows meaningful comparison of different
projects.

WOSA 2001 25

JPLU

Summary (cont’d)

¢ Estimating absolute fault burden requires
information obtained by tracing repaired faults
back to the version of the module(s) in which they
originally appeared
- Cannot be completely automated

+ Also difficulty of separating changes due to fault repair
from changes due to adding or enhancing functionality.
Policies can be developed to require that these types of
changes be given different types of labels in the
configuration library, but software managers and
development team leads are ultimately be responsible for
enforcing such policies.

WOSA 2001 26

JPL

References

[Dillon84] W. R. Dillon, M. Goldstein, Multivariate Analysis Methods and Applications,
John Wiley and Sons, 1984, ISBN 0-471-08317-8

[Mun98] J. Munson, A. Nikora, “Estimating Rates of Fault Insertion and Test
Effectiveness in Software Systems”, proceedings of the Fourth ISSAT
International Conference on Quality and Reliability in Design, Seattle, WA,
August 12-14, 1998

[Niko98] A. P. Nikora, "Software System Defect Content Prediction From
Development Process and Product Characteristics”, Ph.D. Dissertation,
May 1998, University of Southern California, Computer Science
Department

[Niko981] A. Nikora, J. Munson, “Determining Fault Insertion Rates For Evolving
Software Systems”, proceedings of the Ninth International Symposium on
Software Reliability Engineering, Paderborn, Germany, November 4-7,
1998.

WOSA 2001 27

